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Direct numerical simulations are performed of gravity-current fronts in the lock-
exchange configuration. The case of small density differences is considered, where the
Boussinesq approximations can be adopted. The key objective of the investigation
is a detailed analysis of the flow structure at the foremost part of the front, where
no previous high-resolution data were available. For the simulations, high-order
numerical methods are used, based on spectral and spectral-element discretizations
and compact finite differences. A three-dimensional simulation is conducted of a
front spreading along a no-slip boundary at a Reynolds number of about 750. The
simulation exhibits all features typically observed in experimental flows near the
gravity-current head, including the lobe-and-cleft structure at the leading edge. The
results reveal that the flow topology at the head differs from what has been assumed
previously, in that the foremost point is not a stagnation point in a translating system.
Rather, the stagnation point is located below and slightly behind the foremost point
in the vicinity of the wall. The relevance of this finding for the mechanism behind the
lobe-and-cleft instability is discussed. In order to explore the high-Reynolds-number
regime, and to assess potential Reynolds-number effects, two-dimensional simulations
are conducted for Reynolds numbers up to about 30 000, for both no-slip and slip
(i.e. shear-stress free) boundaries. It is shown that although quantitative Reynolds-
number effects persist over the whole range examined, no qualitative changes in the
flow structure at the head can be observed. A comparison of the two-dimensional
results with laboratory data and the three-dimensional simulation provides evidence
that a two-dimensional model is able to capture essential features of the flow at the
head. The simulations also show that for the free-slip case the shape of the head
agrees closely with the classical inviscid theory of Benjamin.

1. Introduction
Gravity currents are essentially horizontal flows driven by the differences in hy-

drostatic pressure at a lateral boundary between a lighter and a heavier fluid. In
atmospheric gravity currents, such as sea-breeze fronts or thunderstorm outflows,
the density differences are typically caused by temperature differences between the
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spreading cold front and the relatively warmer ambient air. In other applications,
density differences may have other sources such as inhomogeneities in the distribution
of a dissolved substance (such as salt in oceanic flows), or the presence of a heavier
particulate phase, as in powder-snow avalanches. Gravity currents are most commonly
encountered in geophysical applications (see Simpson 1997; Huppert 1986), but their
dynamical evolution is of substantial interest in the engineering sciences also, due
to the important role they play in many problems related to industrial safety and
environmental protection (see Fanneløp 1994). A typical scenario in which gravity
currents can form is the accidental release of dense industrial gases that gravity may
spread over relatively large distances at an appreciable speed. A detailed account of
the great diversity of gravity currents, and of their relevance in the natural sciences
and engineering, is given in the monograph of Simpson (1997).

The interest in gravity currents from the various disciplines has initiated a substan-
tial amount of theoretical and experimental research in which gravity currents were
often investigated under idealized conditions that allow the various mechanisms to be
addressed in a more isolated fashion. For example, much work has focused on gravity
currents in confined geometries such as channels and pipes, or on the spreading of
dense fluids over horizontal and inclined plane surfaces (see e.g. Benjamin 1968; Brit-
ter & Simpson 1978; Gröbelbauer, Fanneløp & Britter 1993; Hallworth et al. 1996;
Huppert 1982; Klemp, Rotunno & Skamarock 1994; Simpson & Britter 1979; Yao &
Lundgren 1996). These studies have shown that the dynamics of gravity currents can
to a large extent be understood on the basis of shallow-water theory, provided that
accurate hydraulic front conditions are available for the non-hydrostatic flow at the
head of the current. However, concerning the flow at the head, there are still several
unresolved questions regarding, for example, the nature of the instability that leads to
the pronounced lobe-and-cleft structure at the leading edge of gravity currents spread-
ing along solid boundaries. In this respect, highly resolved numerical simulations can
be expected to provide useful information. Efforts to use numerical investigations as
a complementary tool to experimental measurements in gravity-current research date
back over two decades. However, previous computational studies employed rather
coarse computational grids, in combination with low-order integration schemes, and
were not able to resolve the entire range of length scales present in the flow (see e.g.
Haase & Smith 1989; Jacobsen & Magnussen 1987; Kao, Park & Pao 1977; Klemp
et al. 1994; Thorpe, Miller & Moncrieff 1980; Wang 1985). Therefore, empirical mod-
els and/or additional numerical damping terms had to be used, in order to mimic
the unresolved transport processes. Direct numerical simulations (DNS) of gravity
currents, which are simulations in which all scales of motion are fully resolved in
space and time, have not been attempted to date.

In the present investigation, which is composed of two parts, we discuss results of
a DNS study of gravity currents, which we conducted in order to clarify some of the
open questions concerning the flow at the head of intrusion fronts. Part 1 is concerned
with the topology of the flow at the leading edge and in the near-wall region, which we
examine under different types of boundary conditions beneath the front, namely rigid
no-slip walls and free-slip (i.e. shear-stress free) boundaries. This flow region could
not be analysed in detail in the past, due to a lack of resolution of the data available
from either experiments or computations. Clearly, knowledge of the topology at the
head of a gravity current is a prerequisite for any theoretical treatment of the flow.
Previous theoretical approaches often had to rely on ad-hoc assumptions about the
flow within the gravity-current head, a common assumption being that the nose of
the front (the foremost point) is a stagnation point in a translating system moving
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Figure 1. Lock-exchange flow in a channel of length L1 and height 2h. The dotted line gives the
interface between the two fluids some time after the release (gravity acts in the normal direction x3).

with the front (see Simpson & Britter 1979). The DNS results to be discussed in § 4
reveal that, for no-slip walls, stagnation point and nose are in fact distinct. Among
other things, this finding has relevance for the stability of the flow at the leading edge
of the front and, hence, for the lobe-and-cleft structure. In Part 2 of the present work
(Härtel, Carlsson & Thunblom 2000) we will address this point in detail, and we will
employ DNS along with linear-stability theory to clarify the hydrodynamic instability
which is responsible for the lobe formation at a gravity-current head.

The configuration we consider is the lock-exchange flow, a prototype problem that
has been extensively investigated in experiments in the past (see Fanneløp 1994;
Simpson 1997). Laboratory lock-exchange flows are usually generated in a plane
channel filled with two fluids of different density, which are initially separated by
a vertical gate (see figure 1). When the gate is withdrawn, a mutual intrusion flow
develops, which is characterized by a pair of fronts that travel in opposite directions.
The lock-exchange configuration is particularly well-suited to study the flow at the
head in detail, because in this flow the developed fronts propagate at essentially
constant speed after a short initial transient (see e.g. Härtel, Meiburg & Necker
1999). This allows the head of the front to be examined under steady-state conditions
by using a translating reference frame in which the foremost part is at rest and the
flow around it essentially stationary.

In the following, we will present results from a three-dimensional simulation that
exhibits all the characteristic features of gravity currents, including the pronounced
lobe-and-cleft structure at the leading edge that could not be resolved in previous
simulations by other authors. The Reynolds number, based on front speed and front
height, is about 750, which is about a factor of 2 below the upper limit in Reynolds
number that three-dimensional DNS can reach, given today’s computer capabilities.
This Reynolds-number restriction is caused by the fact that in DNS the numerical
resolution is determined by the disparity between the largest and smallest scales,
which depends directly on the ratio of inertia and viscous forces, and hence on
the Reynolds number. To explore potential Reynolds-number effects and to reach
the more interesting high-Reynolds-number regime, we have therefore conducted a
series of two-dimensional simulations over a range of Reynolds numbers that extends
to about 30 000. However, since the two-dimensional model misses the pronounced
three-dimensional instabilities, a careful validation of the two-dimensional results is
necessary. This will be achieved by comparison with laboratory observations and the
three-dimensional simulation at lower Reynolds number. It should be stressed that a
careful study of Reynolds-number effects is generally an important task in gravity-
current research, since Reynolds-number limitations are not only encountered in DNS
work, but also in laboratory studies where they are determined by the finite size of the
apparatus and the properties of the working fluids used (see, for example, Simpson &
Britter 1979, 1980 and Parsons & Garcia 1998 for a discussion of Reynolds-number
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effects in experiments). If findings from laboratory studies or simulations are to be
applied to large-scale flows, detailed knowledge of their dependence on Reynolds
number is important.

2. Basic equations
In the present work we will focus on flows with relatively small density differences,

for which the usual Boussinesq approximations can be adopted. The Boussinesq
equations (cf. Gebhart et al. 1979), which neglect variations in density ρ̃ (a tilde
denotes a dimensional quantity here) except for the buoyancy term of the momentum
budget, are in dimensionless form

∂uk

∂xk
= 0, (1)

∂ui

∂t
+
∂(uiuk)

∂xk
= − ∂p

∂xi
+

1√
Gr

∂2ui

∂xk∂xk
+ ρe

g
i , (2)

∂ρ

∂t
+
∂(ρuk)

∂xk
=

1√
GrSc2

∂2ρ

∂xk∂xk
. (3)

Here ui denotes the velocity vector, p the pressure, ρ the density, and egi the unit vector
in the direction of gravitational acceleration. In the present study we will consider
flows in horizontal channels only, and hence egi = (0, 0,−1)T generally. All terms in

(1)–(3) have been made dimensionless by the channel half-height h̃ (see figure 1), the
average density ρ̃a, and the buoyancy velocity ũb

ũb =

√
g̃′ h̃, (4)

where g̃′ is the usual reduced gravity, which is computed from the gravitational
acceleration g̃ as

g̃′ = g̃
∆ρ̃

ρ̃a
. (5)

In (5), ∆ρ̃ = ρ̃max − ρ̃min denotes the difference between the reservoir densities of light
and heavy fluid, respectively. The non-dimensional pressure p and density ρ are
given by

p =
p̃

ρ̃aũ
2
b

, ρ =
ρ̃− ρ̃min

∆ρ̃
. (6)

Two dimensionless parameters arise from the normalization, the first being the ratio
of buoyancy forces to viscous forces, which we will refer to as the Grashof number Gr

Gr =

(
ũb h̃

ν̃

)2

. (7)

Equation (2) shows that the square root of the Grashof number plays the role of
a Reynolds number, but for clarity we will not denote this quantity as a Reynolds
number. The reason is that in virtually all experimental studies, Reynolds numbers
are defined by means of the actual speed ũf and height h̃f of the foremost part of a
fully developed front, i.e.

Re =
ũfh̃f

ν̃
. (8)
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This definition of Re will also be adopted here. However, since both the speed and the
height of the front are not known a priori, these quantities cannot be employed for the
purpose of rendering the governing equations dimensionless. The second dimensionless
parameter in the basic equations is the Schmidt number Sc, which represents the ratio
of kinematic viscosity ν̃ and molecular diffusivity K̃ in the density field

Sc =
ν̃

K̃
. (9)

Unless stated otherwise, the Schmidt number will generally be unity in the simu-
lations discussed in this paper. If the differences in density are caused by differences
in temperature, the Schmidt number Sc is identical to the Prandtl number Pr of the
fluid, and the convection–diffusion equation (3) for the density variation becomes the
usual budget of thermal energy.

For strictly two-dimensional flows, it is convenient to recast the governing equations
in a vorticity–streamfunction formulation. Let ψ be the streamfunction and ω the
spanwise vorticity, then the following relations hold:

ω =
∂u3

∂x1

− ∂u1

∂x3

, (10)

u1 =
∂ψ

∂x3

, (11)

u3 = − ∂ψ
∂x1

. (12)

A field equation for the vorticity is obtained by taking the curl of (2), so that the set
of governing equations now becomes

∂ω

∂t
+ uk

∂ω

∂xk
=

1√
Gr

∂2ω

∂xk∂xk
− ∂ρ

∂x1

, (13)

∂2ψ

∂xk∂xk
= −ω, (14)

∂ρ

∂t
+
∂(ρuk)

∂xk
=

1√
GrSc2

∂2ρ

∂xk∂xk
. (15)

The gravitational forcing, as expressed by the second term on the right-hand side of
the vorticity equation (13), indicates that any density variation perpendicular to the
direction of gravity will result in the generation of vorticity, and hence of velocity.

3. Computational approach
In the present investigation we employ two different simulation codes, the first of

which is described in Härtel et al. (1997), where a detailed validation is also given. In
both codes the governing equations are solved numerically in the rectangular domain
sketched in figure 1. In principle, the problem at hand does not have any intrinsic
symmetries that would allow a direct application of Fourier methods. However, if slip
boundaries are introduced at x1 = ±L1/2, a Galerkin-type discretization using sine
and cosine expansions in the longitudinal direction x1 becomes feasible. This is the
approach we have adopted here, because a Fourier–Galerkin scheme allows a fast
solution of the respective Poisson equations (for either pressure or streamfunction,
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depending on the formulation of the basic equations employed) that have to be
solved at each time step. In order to further reduce the computational expense, we
used a simple adaptation strategy, in which at each stage of the simulation the
computational box is only slightly longer than the frontal system, and is gradually
enlarged as the fronts proceed. This approach is justified by the fact that boundaries
in the longitudinal direction do not significantly affect the dynamics of the flow until
the advancing fronts have approached the boundaries to within about 1–2 channel
half-heights (see Härtel & Meiburg 1999).

While in our simulations the computational domain is always large enough to
accommodate the full length of the fronts, other authors have pursued a different
approach in the past. For example, Klemp et al. (1994) used a translating coordinate
system that moves with the front and only retains its leading part in a computational
box of finite size. The advantage of this treatment is that it greatly reduces the
computational costs of the simulation. However, this is achieved at the expense of
a substantial simplification of the problem, since the full interaction of the mutually
intruding fronts is no longer captured. For example, due to both the ever increasing
influence of viscous forces at the interface and the developing boundary layers, the
front speed is bound to decay in a lock-exchange flow, a feature that is missed if the
computational domain does not encompass the complete frontal system. In addition,
difficulties with this approach arise when DNS are performed, which fully resolve
the formation of interfacial vortices. The convection of these vortices out of the
flow domain renders the specification of proper inflow/outflow boundary conditions
difficult.

The code developed by Härtel et al. (1997) uses the velocity–pressure formu-
lation (1)–(3). It employs a mixed discretization in space based on a spectral-element
collocation technique in the wall-normal direction, and Fourier expansions in the
longitudinal and lateral directions. For the time discretization, a semi-implicit method
is employed. This semi-implicit scheme, along with the spectral-element discretization,
provides good flexibility of the numerical mesh in the normal direction, but in a
lock-exchange flow this flexibility is not indispensable. To reach very high Grashof
numbers, we have therefore also adopted an existing highly optimized program for the
simulation of two-dimensional particle-driven flows. This code is based on the above
vorticity–streamfunction formulation and employs equidistant grids in both directions,
along with an explicit third-order-accurate low-storage Runge–Kutta time integration
scheme (see Wray 1991). Like the code of Härtel et al. (1997), this employs a spectral
method in the longitudinal direction, which expands both the streamfunction ψ and
the vorticity ω in cosine series, i.e.

ψ(x1, x3, t) =
∑
k

ψ̂k(x3, t) cos(k α x1), (16)

ω(x1, x3, t) =
∑
k

ω̂k(x3, t) cos(k α x1). (17)

Here

|k| < N1

2
, α =

π

L1

, (18)

and N1 represents the number of grid points in the longitudinal direction. The explicit
time integration, together with the Galerkin approximation in x1, transforms (13),
(14) into the following equations for the time advancement of each pair of modes
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(ψ̂k, ω̂k) over the mth Runge–Kutta substep (m = 0, 1, 2):

ω̂m+1
k = ω̂m

k + γm∆t

(
1√
Gr

(
(ω̂m

k )′′ − (k α)2ω̂m
k

)
+ N̂m + f̂mb

)
+ ηm∆t

(
1√
Gr

(
(ω̂m−1

k )′′ − (k α)2ω̂m−1
k

)
+ N̂m−1 + f̂m−1

b

)
, (19)

(ψ̂m+1
k )′′ = − ω̂m+1

k . (20)

In equations (19), (20), the prime denotes differentiation with respect to x3. N̂ and

f̂b represent the coefficients of the Fourier transforms of the nonlinear term and the
buoyancy term, respectively,

N = −u1

∂ω

∂x1

− u3

∂ω

∂x3

, (21)

fb = − ∂ρ

∂x1

. (22)

The evaluation of the nonlinearity N at each time level is performed in a pseudo-
spectral manner (cf. Canuto et al. 1988). For the differentiation in the normal direction
we employ compact finite differences in the form given by Lele (1992), which are of
sixth order in the interior of the flow domain. Given all quantities at time m and
m − 1, equations (19), (20) are then readily solved for ψ̂m+1

k and ω̂m+1
k . As boundary

conditions at x3 = ±1 we impose either rigid no-slip walls or slip boundaries, which,
in terms of streamfunction and vorticity, are

no-slip: ψ̂m+1
k = 0, ω̂m+1

k = −(ψ̂mk )′′, (23)

slip: ψ̂m+1
k = 0, ω̂m+1

k = 0. (24)

For the density field we do not apply a Fourier scheme in x1, since derivatives in
ρ can be represented by compact finite differences in both directions without giving
rise to any complications. An explicit Runge–Kutta time integration of equation (15)
is then straightforward. At the boundaries x3 = ±1 and x1 = ±L1/2 we require the
mass flux to vanish, which corresponds to homogeneous Neumann conditions for ρ:

∂ρ

∂x1

= 0 at x1 = ±L1/2, (25)

∂ρ

∂x3

= 0 at x3 = ±1. (26)

We have validated the code by direct comparison of the results obtained with the
two programs for several different test problems, and in all cases excellent agreement
was obtained. In the present study the compact finite differences program was used
for the high-Gr simulations of two-dimensional flows, while the two-dimensional and
three-dimensional results at low and moderate Grashof numbers were obtained with
the code of Härtel et al. (1997). In all simulations, the flow field was initialized with
fluid at rest, i.e. ui = 0 everywhere (corresponding to ψ = 0 and ω = 0). In the initial
density field, constant values are prescribed in the left- and right-hand channel halves
with a steep, but smooth, transient in between. This transient has the form of an
error function and its steepness depends on the actual Grashof and Schmidt numbers
of the flow. Details on the derivation of the initial density profile and the associated
numerical resolution requirements can be found in Härtel et al. (1997).
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Figure 2. Three-dimensional lock-exchange flow between no-slip walls at a Grashof number of
Gr = 1.5 × 106 (Sc = 0.71). Flow fields at different times t visualized by a density isosurface for
ρ = 0.5 together with isocontours of density in the side-plane. To enhance the breakdown to a
highly three-dimensional state, the initial interface has been distorted in x2 and x3.
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4. The no-slip case
In the following, we will briefly describe some overall features of the three-

dimensional flow obtained by DNS in the light of previous experimental observations.
Subsequently, we will focus on the detailed flow structure around the head of the front.
In the three-dimensional simulation a computational box with a lateral size L2 of three
times the channel half-height was used, and the Grashof number was set to 1.5× 106.
This corresponds to a Reynolds number of about 750. An impression of the overall
structure of the flow can be gained from figure 2. In the final stage, a computational
mesh consisting of about 4.25 million grid points was used. In order to accelerate the
three-dimensional breakdown, the initial density interface was somewhat distorted in
the lateral and wall-normal directions. Alternatively, three-dimensional velocity dis-
turbances could have been superimposed at time t = 0 in order to mimic the situation
encountered in experiments, where the quick removal of the splitter plate introduces
substantial turbulence at the interface. We point out, however, that the transition
to a three-dimensional state does not require large-amplitude initial disturbances.
A minute three-dimensionality due to round-off errors is sufficient, but the final
breakdown to a fully three-dimensional flow will then occur somewhat later in time.

Clearly visible in figure 2 is the distinct head of the front with a foremost region,
the so-called nose, which is raised above the wall. Also seen is the intense three-
dimensionality of the flow at the leading edge, which is a typical feature of the head
of a front spreading along a no-slip wall (see Simpson 1972). This lobe-and-cleft
structure is absent in the simulation initially, but it evolves soon after the release. The
mechanism behind the initial formation of the lobes and clefts is a buoyancy-induced
instability that, as will be discussed in detail in part 2, acts in a localized fashion near
the leading edge. At later times of the simulation, when the three-dimensionality at
the foremost part of the front is fully developed, the average and maximum size of the
lobes are about 0.5h and 0.9h, respectively, which compares well with experimental
data given by Simpson (1972) for this Reynolds number.

Along with the regular flow structure at the leading edge, Kelvin–Helmholtz-
like interfacial vortices, which are shed from the advancing fronts, break up into
three-dimensional turbulence during the later evolution of the flow. At t = 5, 10 the
interfacial rollers still extend across the whole channel span, but their coherence has
completely disappeared by time t = 15. However, even in a fully three-dimensional
flow Kelvin–Helmholtz billows still form at the heads, although they can usually
be identified in individual longitudinal cross-sections only (Simpson 1969). In the
present simulation this continuing formation of interfacial billows is recognized from
the density isocontours at x2 = 0 which are included in figure 2.

In the two-dimensional simulations that we conducted to explore the relevant high-
Gr regime, the development of small-scale three-dimensional turbulence is missing.
Although a distinct head of the front develops in this case too, the break-up of both
the interfacial vortices and the flow front at the leading edge is therefore precluded. For
illustration, figure 3(a) shows density isocontours from a two-dimensional simulation
at a Grashof number of 1.25× 106 (Re ≈ 710). This simulation was performed using
a numerical mesh with N1 × N3 = 768 × 91 grid points. The striking symmetry in
the density field is a direct consequence of the symmetry properties of the initial and
boundary conditions, which are preserved by the Boussinesq equations. It must be
stressed, however, that slight deviations from a perfectly symmetric initial state are
strongly enhanced at sufficiently large Grashof numbers. From our DNS we found
that for Grashof numbers beyond 108, say, round-off errors already suffice to obtain
a visibly asymmetric solution after a few dimensionless time units.
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Figure 3. Two-dimensional lock-exchange flow between no-slip walls at a Grashof number of
Gr = 1.25 × 106. (a) Flow fields at various times t of the simulation visualized by isocontours of
density, (b) isocontours of vorticity at time t = 20 (dashed lines ω < 0, solid lines ω > 0).

In figure 3(b) the vorticity field is given for the flow field in the bottom graph
of figure 3(a). It shows how the (negative) vorticity generated by the baroclinic
production term is contained in the interfacial region. As the flow is bounded by
no-slip walls in the normal direction, the total circulation remains essentially zero
throughout the simulation, and the negative vorticity at the interface is balanced by
positive vorticity diffusing into the flow domain at the walls. It is recognized from
figure 3(b) that this positive vorticity is concentrated in the boundary layers that form
underneath the propagating fronts.

4.1. Speed of the front

In the lock-exchange configuration, the flow at the head is best analysed in a
translating system that moves at the constant speed of propagation uf which the
front attains after the initial transient. In this translating system, the leading part of
the front is at rest and the flow in its neighbourhood is essentially stationary. The
front speed uf is commonly defined as the speed at which the foremost point of the
front travels, i.e.

uf =
dxf1
dt
, (27)

where x
f
1 denotes the actual position of the foremost point in the longitudinal

direction. In the analysis of our DNS data, we have determined the position of the
nose by inspection of the density field from which it is most easily found. The ratio
of asymptotic front velocity and buoyancy velocity is usually denoted as the Froude
number Fr of the front (Simpson 1997), and is one of the most relevant integral
parameters of the flow. From the Froude number and Grashof number, the Reynolds
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number (8) of the front can be evaluated as

Re ≈ 1.1Fr
√
Gr, (28)

where the factor 1.1 accounts for the actual height h̃f of the head, which we found to
be typically some 10% larger than the channel half-height.

In the literature, there appears to exist some controversy regarding the variation of
Fr with Re (or Gr) for large Reynolds numbers (see, for example, Simpson & Britter
1979). This may be at least partially due to the difficulties associated with accurately
measuring the frontal velocity, which may lead to uncertainties on the order of at least
several per cent (J. Müller & T. K. Fanneløp, private communication). This can make
it somewhat difficult to accurately quantify the variation of Froude number with Re
experimentally, especially at higher Reynolds numbers where the dependence of the
front speed on viscous effects quickly diminishes. The front velocity can be determined
to a much higher degree of accuracy in the present direct simulations. The relevant
data are presented in figure 4, where the respective results are given from the three-
dimensional DNS (open square) and a series of two-dimensional simulations with
Grashof numbers ranging between 5× 104 and 2× 109. While a comparatively coarse
computational mesh with no more than a few thousand grid points was sufficient
for the two-dimensional flow at Gr = 5 × 104, the discretization had to be increased
drastically with Grashof number. Almost 107 grid points (N1×N3 = 8192×1200) were
used in the simulation for Gr = 2× 109. The range of Reynolds numbers spanned by
the two-dimensional simulations extends from about 120 to 32 000. In good agreement
with the experimental data given, the simulations show that the Froude number grows
with increasing Grashof (or Reynolds) number over the whole range examined. It is
also seen that the increase in front speed slows down at higher Grashof numbers,
as mentioned before, and that the remaining increase in the high-Grashof-number
regime (between Gr = 108 and 109, say) is indeed of the order of the typical scatter
encountered in laboratory measurements. The latter is illustrated by a vertical bar in
figure 4, which gives the span of results obtained in recent lock-exchange experiments.
The measurement uncertainty amounts to about 5–10% in this case. Finally, we wish
to point out that the agreement between the two-dimensional simulations and both
the three-dimensional DNS and the experiments is remarkably close, which suggests
that (at least over the range of Gr studied here) the Froude number of the front is
not very sensitive to three-dimensional effects.

4.2. Structure of the head

For the analysis of the flow in the translating system we will use a relative coordinate
x′1, a relative velocity u′1, and – for a two-dimensional flow – a streamfunction ψ′,
respectively, which are defined as

x′1 = x1 − xf1 , u′1 = u1 + uf, ψ′ = (ψ + uf)x3. (29)

A typical snapshot of the gravity-current head in the translating system is given in
figure 5. The flow field is taken from the three-dimensional simulation at some later
time, when the flow at the leading edge is fully developed. The pronounced lobe-and-
cleft pattern at the foremost part is clearly visible from the density isosurface, and it
indicates that the flow is highly three-dimensional. In the present study, however, we
are primarily interested in mean properties of the three-dimensional flow, and their
agreement with the corresponding properties of two-dimensional flows. In order to
obtain the mean structure of the head, the flow field in figure 5 can be averaged over
the full box size L2 in the lateral direction. The resulting mean values, indicated by
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Figure 5. Three-dimensional lock-exchange flow at Gr = 1.5 × 106 and Sc = 0.71. Flow field
visualized by a density isosurface (ρ = 0.5). Side-plane: instantaneous streamlines in a moving
frame of reference. Back plane: density distribution.

an overbar, are defined by

f(x′1, x3, t) =
1

L2

∫ L2

0

f(x′1, x2, x3, t) dx2, (30)

where f can be any of the flow variables ui, ρ, and p. Since the mean lateral
velocity u2 is approximately zero, the average flow field is essentially two-dimensional
and can be represented by a mean streamfunction ψ′ in the translating system.
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Figure 6. Structure of a three-dimensional gravity current head averaged in x2 (same flow as
in figure 5). (a) Isocontours of the average streamfunction ψ′ in a moving frame of reference.
(b) Isocontours of the average density field ρ. In both graphs the thick line gives the stagnation
streamline.

Isocontours of ψ′ along with isocontours of the average density field ρ are given
in figure 6 for the same flow field as in figure 5. A comparison of the density field
of the three-dimensional flow with the two-dimensional results given in figure 3
reveals that in the three-dimensional case the average density interface is somewhat
broader, as a consequence of the additional turbulent mixing between the fluids.
However, in general the shape and structure of the two-dimensional front and the
averaged three-dimensional front are very similar. This observation is also confirmed
by a comparison of the streamline pattern of the three-dimensional simulation with
the respective result for the two-dimensional flow in figure 3, which is given in
figure 7.

The streamline patterns in figures 6 and 7 show that the flow of light fluid
approaching the front from the left bifurcates, so that a certain fraction of it is
overrun by the gravity current, while the rest ends up above the heavier fluid. In the
oncoming flow, the stagnation streamline separates these two regions of the lighter
fluid. Along this streamline the flow is continuously decelerated, which goes along
with a substantial increase in static pressure. This is reflected by the wall-pressure
distribution at x3 = −1, which has been included in figure 7 in the form of a
normalized pressure difference ∆pw

∆pw =
p(x1, x3 = −1)− p(−L1/2, x3 = −1)

u2
f/2

. (31)

Note that for Gr = 1.25× 106 the increase in pressure amounts to almost two times
the dynamic pressure u2

f/2 of the oncoming light fluid, which highlights the substantial
influence of viscous forces at low and moderate Grashof numbers.

Regarding the nature of the lobe-and-cleft instability, the topology of the streamline
pattern at the head of the current, and in particular the location of the stagnation
point with respect to the nose of the current, is crucial. First of all, it determines the
amount of light fluid that ends up below the heavier fluid, i.e. the energy available
to trigger a buoyancy-driven instability downstream of the head. In addition, it also
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Figure 7. Structure of the head of a gravity-current advancing over a no-slip wall. Shown are
isocontours of the streamfunction in a moving frame of reference (the thick line is the stagnation
streamline). Results for Gr = 1.25× 106 (a), 4× 108 (b), 2× 109 (c). Top right: velocity profile u′1(x3)
at the right-hand margin of the section shown (note that the walls at x3 = ±1 are moving to the
right with speed uf). Below: Increase in wall pressure pw at x3 = −1 normalized by u2

f/2.

provides information on whether or not fluid can temporarily enter the region below
the nose, only to flow around the nose and end up above the current. In this regard,
the key observation from figures 6 and 7 is that the stagnation point of the flow
is located below and slightly behind the foremost part of the front. This creates a
region of unstable stratification at the leading edge that does not involve the light
fluid eventually overrun by the current. This finding on the stagnation point location
is in marked contrast to what has been previously suggested in the literature, namely
that the stagnation point and foremost point of a front coincide (cf. Simpson 1997;
Simpson & Britter 1979). That this feature is not due to the comparatively low
Reynolds number of the three-dimensional simulation becomes clear from figure 7,
which shows the structure of the head as obtained from two further two-dimensional
simulations for substantially higher Grashof numbers, namely for Gr = 4 × 108 and
2× 109 (the corresponding Froude numbers and Reynolds numbers are summarized
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Gr Re Fr ∆yn/h ∆ys/h V̇u/V̇0 (%)

1.25× 106 ≈ 700 0.574 0.26 0.065 1.25
4× 108 ≈ 14 000 0.637 0.13 0.025 0.49
2× 109 ≈ 32 000 0.651 0.11 0.018 0.34

Table 1. Nose height ∆yn and height of the stagnation point ∆ys in a moving frame of reference.
Results for different Grashof numbers. Re is the Reynolds number defined by (28), Fr is the Froude
number of the front, and V̇u/V̇0 is the fraction of the oncoming fluid which flows underneath the
front.
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Figure 8. Structure of the head of a two-dimensional gravity current advancing over a no-slip
wall. Flow visualized by isocontours of density. Results for different Grashof numbers.

in table 1). Due to the early vortex roll-up at the interface (see figure 8), the outline
of the head in figure 7 quickly becomes corrugated at higher Gr, but the flow at the
leading edge still remains steady. It is evident from the figure that the stagnation
point and foremost point of the front are distinct in all cases.

Previously, the thin layer of light fluid pulled underneath the front was assumed to
play the key role concerning the lobe-and-cleft instability. For this reason, we have
evaluated the actual amount of light fluid V̇u that flows underneath the front for
the three flow fields shown in figure 7. Table 1 summarizes the results in terms of
the ratio of V̇u and the total volume flux V̇0 = 2uf . It is seen that the volume flux
of light fluid becomes extremely small at high Grashof numbers and amounts to a
mere 0.3% at Gr = 2 × 109. Its associated buoyancy therefore is very small, which
already provides a hint that the lobe-and-cleft structure is not primarily driven by the
fluid that is pulled beneath the current, especially since this instability is known to be
more pronounced at higher Grashof numbers. Consistent with previous experimental
observations, we see from our simulations that the near-wall light fluid rises slowly
through the current downstream of the head, but no relation of this rise with the
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frontal instability could be detected. In Part 2 we will show that the lobe-and-cleft
structure, rather, develops in the unstably stratified flow region between the nose and
stagnation point. The dominant mode of instability, that causes the breakdown of
the two-dimensional front, is localized at the leading edge and travels with the front
at speed uf . An idea of the emergence of this instability can be gained from the flow
field at time t = 5 in figure 2 where a small-scale disturbance at the leading edge
becomes discernible, which is wave-like in the spanwise direction. The unstable modes
at the leading edge are strongly amplified, and consequently their time scale is much
shorter than the time scale of the buoyancy-induced rise of the thin layer of light
fluid beneath the front. For Gr = 4 × 108, for example, disturbance amplitudes may
grow as fast as exp((4ũb/h̃)× t̃) which corresponds to a growth by a factor of about
50 in a single dimensionless time unit.

In addition to its significance for the mechanism behind the frontal instability,
the location of the stagnation point is also a key ingredient in theoretical models
for the flow at a gravity current head. For inviscid boundary currents or intrusive
flows, the oncoming flow along the stagnation streamline is essentially loss-free, which
allows the stagnation conditions to be determined by direct application of Bernoulli’s
theorem (see e.g. Benjamin 1968; Holyer & Huppert 1980). Simpson & Britter (1979)
have tried to apply this concept to viscous boundary currents, assuming that the
nose and stagnation point coincide. However, the present results not only show
that these two loci are distinct, but it also becomes clear from the figures that the
stagnation streamline is located in the highly rotational near-wall region which is
strongly influenced by frictional forces. This precludes the application of ideal-fluid
theory along the stagnation streamline, a fact that may render a refined theoretical
modelling of the flow at the head difficult.

For Gr = 1.25 × 106, the steady-state velocity profile u′1(x3) at the right-hand
margin of the section of the flow domain has also been included in figure 7 for
further comparison with experiments. It is seen that the internal velocity within the
advancing front exceeds the front speed. This is necessary, since at the wall and the
interface there is a continuous loss of fluid from the head that must be balanced by
additional transport from within the current. In figure 7 the maximum excess velocity
is about 20% of the front speed, a result that again compares well with experimental
data given by Simpson & Britter (1979).

A comparison of figures 6 and 7 reveals that the presence of the lobe-and-cleft
structure has only a minor effect on the topology of the mean flow at the leading edge.
Also, the height of the nose appears hardly affected by the three-dimensionality. From
the stagnation streamline the nose elevation ∆yn, which is the distance between nose
and lower wall, is estimated to lie between 0.23 and 0.24 for the three-dimensional
flow, which is only some 10% smaller than the corresponding value for the two-
dimensional flow at similar Reynolds number (see table 1). In addition to the nose
elevation, table 1 also summarizes the elevation ∆ys of the stagnation point for all
three flows shown in figure 7. It is seen that both quantities decrease with increasing
Gr which again demonstrates that Grashof-number effects in the flow persist over
the whole range examined. However, apart from quantitative changes they do not
alter the picture qualitatively, as became clear from figure 7. A direct comparison
of the data in table 1 with experimental observations is provided in figure 9, where
the normalized nose height is depicted. The comparison shows that for all Reynolds
numbers the two-dimensional simulations agree well with the experiments, giving
further evidence that the nose elevation, similarly to the Froude number discussed in
§ 4.1, is not affected much by the three-dimensionality of the flow.
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Figure 9. Variation of nose height ∆yn with Reynolds number (figure after Simpson & Britter
1979). ∆yn is normalized with the total head height h̃f , and Re = ũf h̃f/ν̃. The dashed line is from
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two-dimensional DNS data.

Figure 10. Intrusive gravity current travelling along a density interface between two fluids. The
dashed lines give the front shape derived by Benjamin (1968). (Courtesy R. Britter, with permission.)

5. The slip case
Gravity currents of heavier fluid usually spread over solid boundaries underneath

them, where the no-slip condition holds. In the inverse case of the dispersion of
light fluid in an environment of higher density, the flow may also occur along slip
boundaries, such as in the case of freshwater entering a saltwater reservoir, where it
spreads along the free surface. We note that a free surface differs from a pure slip
boundary in that the pressure along a slip boundary does not need to be constant,
but this difference is only significant for flows with larger density variations (see
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Benjamin 1968; Daly & Pracht 1968; Britter & Simpson 1978). In numerical studies
of gravity currents driven by small density differences, it is common therefore to treat
free surfaces as slip boundaries (cf. Kao et al. 1977; Wang 1985) which is also done
here. In order to study directly the effect of boundary conditions on the flow, we have
carried out additional two-dimensional DNS for lock-exchange flows in which slip
conditions were imposed at both the upper and the lower boundary. In the laboratory,
a very similar flow can be generated by means of an intrusive gravity current that
travels along a thin density interface between two fluids in an open channel. As pointed
out by Britter & Simpson (1981), such a flow resembles a gravity current along a slip
boundary if the two fluid layers are of equal depth and the density of the intruding
fluid is the mean of the two densities. Figure 10 gives a snapshot of such a flow where
the (virtual) lower slip boundary coincides with the plane of symmetry defined by
the density interface ahead of the front. The figure shows that the three-dimensional
instability at the leading edge is absent in the slip case. Consequently, the flow at the
foremost part of the front, which is of primary interest here, remains essentially two-
dimensional (see also Britter & Simpson 1978). For this reason, we have not conducted
a three-dimensional simulation for slip boundaries in the course of the present study.

The principal difference between dispersion along a solid wall and a slip boundary
is that in the latter case no frictional forces are being exerted on the advancing front
by the boundary. Surface friction may retard a propagating front substantially, as has
been demonstrated in experiments and computational studies (Haase & Smith 1989;
Simpson & Britter 1980; Wang 1985), and it also strongly influences the topology of
the flow. As figure 10 shows (see also Simpson 1972; Britter & Simpson 1978), the
foremost point of the current is located right on the boundary in the slip case, which
is in contrast to the no-slip case, where it is raised above the wall. This feature is
also seen in the simulation results of a two-dimensional lock-exchange flow with slip
boundaries, which is visualized in figure 11 with the aid of isocontours of density and
vorticity. The Grashof number of the flow in figure 11 is the same as the Grashof
number of the flow in figure 3, but the differences with respect to the flow structure
at the foremost part are obvious. From the density fields in figure 11, it is found that
no fluid is overrun by the fronts, and also that no region of unstable stratification
develops at the leading edge.

5.1. Speed of the front

The dependence of front speed on Grashof number as obtained from the two-
dimensional simulations with slip conditions is included in figure 4, where it is seen
that in this case the Froude number approaches a limit of 0.69 beyond, say, Gr = 108.
This is smaller than the theoretical prediction of 1/

√
2 of Benjamin (1968), but agrees

with two-dimensional simulation results of Klemp et al. (1994). The curves also show
that the normalized frontal speeds with no-slip boundaries are smaller than those of
the free-slip case, although the differences between the two decrease with increasing
Gr. For Gr = 1.25× 106 the difference in front speed amounts to about 20%, which
is very similar to the discrepancy that Klemp et al. (1994) observed between their
computational results for slip boundaries and the experiments of Rottman & Simpson
(1983). To account for surface friction, Klemp et al. introduced an empirical drag
coefficient assuming a turbulent boundary layer underneath the front, which led to
improved agreement. However, figure 4 shows that friction by a (two-dimensional)
laminar boundary layer already suffices to explain the difference in front speed, and
we therefore suspect that turbulence may not have played a major role in the surface
drag in Rottman & Simpson’s experiments.
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Figure 11. Two-dimensional lock-exchange flow between slip boundaries at a Grashof number of
Gr = 1.25 × 106. (a) Flow fields at various times t of the simulation visualized by isocontours of
density, (b) isocontours of vorticity at time t = 20 (dashed lines ω < 0, solid lines ω > 0).

5.2. Structure of the head

Figure 12 illustrates the structure of the foremost part of the front for the slip case by
instantaneous streamlines for flows at Grashof numbers of 2×107, 4×108, and 2×109.
As in § 4.2 (see equation (29)), a relative coordinate x′1 and a relative velocity u′1 in
the translating system have been introduced. The corresponding Froude numbers of
the fronts are Fr = 0.689 for the lowest Grashof number and 0.691 for the other
two Grashof numbers, respectively. In all three cases, the roll-up of the interfacial
vortices occurs within the section of the flow domain shown, which leads to the
irregular shape of the instantaneous streamlines observed downstream of the leading
edge. For dispersion along a slip boundary, the stagnation point in the translating
system coincides with the foremost point of the front, and hence is located on the
boundary. This is clearly seen in the streamline pattern shown in figure 12. At the
stagnation point, the stagnation streamline in the interior of the flow domain meets
two associated stagnation streamlines, one from within the oncoming flow and the
other from within the front, which coincide with the lower boundary.

Although viscous friction does not occur at a slip boundary, friction and mixing
at the interface still erode fluid from the head, and consequently some additional
transport of heavy fluid from within the gravity current towards the head is required
here too. As for no-slip walls, the flow in the head of the front must hence not be at
rest. An idea of the magnitude of this internal transport is gained from the bottom
graph in figure 12, where the relative velocity at the lower boundary u′w = u′1(x3 = −1)
is depicted. Being identical to uf far ahead of the front, u′w continuously decreases to
zero as the stagnation point is approached. Within the foremost part of the front u′w
is negative and almost constant, taking a value of approximately 30% of uf . Note
that the increase in u′w at the stagnation point is very steep when the stagnation
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Figure 12. Structure of the head of a gravity-current advancing over a slip boundary. Shown are
isocontours of the streamfunction in a moving frame of reference (the thick line is the stagnation
streamline). Results for Gr = 2 × 107 (a), 4 × 108 (b), 2 × 109 (c). The bottom graph shows the
longitudinal velocity u′w at the wall normalized by uf . –·–·–, Gr = 2 × 107; – – –, 4 × 108; ——,
2× 109.

point is approached from the right. Since the flow around the leading edge of the
front is stationary and essentially irrotational (except for the immediate vicinity of
the stagnation point), u′w also allows the pressure distribution pw(x′1) at the wall to be
assessed. From a straightforward application of Bernoulli’s theorem, one obtains that
beneath the head pw falls some 10% below the stagnation pressure u2

f/2.
In the simulations in figure 12, the flow within and around the head differs in

several respects from the idealized configuration that Benjamin (1968) analysed in
his theoretical work. However, it is of interest to examine the extent to which his
findings may apply to the present case. Major differences between the flow considered
by Benjamin and the present free-slip case are due to the developing instability at the
interface and the action of frictional forces within the fluid. Also, as pointed out before,
in a moving frame of reference the fluid within the advancing fronts is not stagnant,
as assumed in Benjamin’s analysis, and its inertia therefore cannot be neglected in the
respective momentum balance. For comparison with Benjamin’s result we employ the
stagnation streamline, which is identical to the shape contour within the stationary



The flow at a gravity-current head. Part 1 209

–1

0 1 2
x ′

1

0

x3

Figure 13. (Instantaneous) front shape of gravity currents advancing over slip boundaries (same
flow fields as in figure 12). Results for –·–·–, Gr = 2× 107; – – –, 4× 108; ——, 2× 109. The solid
line shows the front given by Benjamin (1968).

part of the flow at the leading edge. Figure 13 depicts the three respective stagnation
streamlines from figure 12 plotted in one diagram along with the contour line given
by Benjamin. It is seen that for all three Grashof numbers the stationary part of the
respective stagnation streamlines (which is the part not yet distorted by the developing
instability) is in almost perfect agreement with the theoretical result. Similarly good
agreement with Benjamin’s theory is seen in the experimental photograph in figure
10, where the theoretical contour is represented by dashed lines.

While the foremost part of an advancing front reaches a steady state soon after the
initial release, the flow downstream of the leading edge may need considerably more
time before it is fully developed. In order to determine the length of the head and the
minimum height of the interface in its wake, we have conducted a simulation over
more than 50 dimensionless time units, from which we evaluated a virtual height H
of the gravity current by vertically integrating the non-dimensional density field and
dividing by the full channel height, i.e.

H(x1) = 1
2

∫ +1

−1

ρ dx3. (32)

This is similar to the method used by Crook & Miller (1985) and Klemp et al. (1994)
in their analysis of numerical simulation data of two-dimensional gravity currents.
The results for H obtained from five individual flow fields are given in figure 14, along
with the average over the time interval t = 40–50, which is included as a thick solid
line. If we take the head to be the region between the stagnation point and the location
of minimum height of the dense layer, the length of the head amounts to about 5–8h
which compares well with what is seen in visualizations of laboratory flows (see, for
example, Rottman & Simpson 1983). The minimum height of the current in the wake
amounts to approximately 0.25 to 0.3 in figure 14, a result that again closely agrees
with data reported by other authors (cf. Klemp et al. 1994; Simpson & Britter 1979).

6. Concluding remarks
In the present paper, we have discussed results from a direct numerical simulation

study of gravity currents in two- and three-dimensional lock-release flows. The main
objective of the study was a detailed analysis of the flow topology at the foremost
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Figure 14. Height H (see equation (32)) of a gravity current as a function of relative coordinate x′1.
Two-dimensional simulation performed with slip boundaries and Gr = 2 × 107. Shown are results
for five time instants between t = 40 and 50. The thick line is the average over that time span.

part of a gravity current head, where so far no detailed information has been
available from either measurements or computations. First, a careful analysis of
this flow region is essential for the understanding of the pronounced lobe-and-cleft
structure that develops at the leading edge of fronts spreading along solid boundaries;
moreover, knowledge about the flow topology at the leading edge is also required for
any refined theoretical approach to the flow at a gravity current head. In the present
study two different cases were considered, namely dispersion over a rigid no-slip
wall and dispersion along a slip (i.e. shear-stress free) boundary. For the simulations,
high-order numerical schemes were employed which allow all relevant length and
time scales in the flow to be resolved accurately.

We have presented a three-dimensional simulation which exhibits all the features
that are typically observed with laboratory lock-exchange flows, including the lobe-
and-cleft structure which had not been resolved in previous simulations by other
authors. The simulation was performed for a Reynolds number of about 750, which
is close to the upper limit of what is accessible to three-dimensional DNS with today’s
computer capabilities. In order to explore the high-Reynolds-number regime that is
more relevant in practice, we also conducted two-dimensional simulations over a wider
range of Reynolds numbers in addition to the three-dimensional simulation. However,
since a two-dimensional model misses the pronounced three-dimensional instabilities
of gravity currents, a careful validation of the two-dimensional results by comparison
with both laboratory observations and the three-dimensional simulation at lower
Reynolds number was undertaken. It was demonstrated that a two-dimensional
model can reliably predict not only integral quantities such as the Froude number,
but also more subtle aspects of the flow, such as the elevation of the nose or details
of the flow structure within the gravity-current head.

A key finding of the present study is that for the no-slip case the flow topology at
the head is different from what has been assumed previously. We have shown that in
a translating system moving with the front, the stagnation point and foremost point
do not coincide. Rather, the stagnation point is located upstream of the foremost
point, in the vicinity of the wall. Among other things, this finding has relevance for
the mechanism behind the lobe-and-cleft structure at the leading edge, since between
nose and stagnation point a region of unstable stratification exists which does not
involve the light fluid pulled beneath the front. The three-dimensional simulation
showed that the frontal breakdown originates in this region and not, as assumed
in the past, from the buoyancy-induced rise of light fluid overrun by the front. In
part 2 of the present investigation we will address this point in more detail, when
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we examine the stability properties of the flow at the leading edge by means of a
linear-stability analysis.

For the slip case, we compared the flow topology with the theoretical result given
by Benjamin, and an almost perfect agreement with respect to the shape of the front
was obtained. A comparison with previously unpublished experimental results of
R. E. Britter showed that such an agreement can also be observed in the closely related
problem of an intrusive front travelling along a density interface. It should be stressed,
however, that such good agreement is not necessarily to be expected, since in Ben-
jamin’s analysis viscosity or the presence of interfacial instabilities are not taken into
account. The latter lead to a continuous loss of material from the head of the front,
which implies that, in contrast to Benjamin’s model, the flow within the head cannot be
stagnant, since additional transport towards the head is needed to balance the losses.

In good agreement with experimental observations, the present simulations have
shown that in lock-exchange flows quantitative Reynolds-number effects may persist
up to Reynolds numbers of at least 30 000, i.e. throughout the typical range of
laboratory experiments. On the other hand, the key findings concerning the flow
topology at the foremost part do not depend on Reynolds number. We have shown
that for the no-slip case the Froude number increases with increasing Reynolds
number over the whole range examined, whereas it becomes independent of Reynolds
number above Re ≈ 15 000 for slip boundaries. The maximum Froude number that
a lock-exchange front may attain in the slip case is about 0.69, which is smaller than
the theoretical result of 1/

√
2 given by Benjamin. A direct comparison of simulation

results for the slip and no-slip cases illustrates that wall friction retards a front
considerably at low and moderate Reynolds numbers.
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Gröbelbauer, H. P., Fanneløp, T. K. & Britter, R. E. 1993 The propagation of intrusion fronts
of high density ratios. J. Fluid Mech. 250, 669–687.

Haase, S. P. & Smith, R. K. 1989 The numerical simulation of atmospheric gravity currents. part
I: neutrally-stable environments. Geophys. Astrophys. Fluid Dyn. 46, 1–33.
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